[ad_1]
Taylor, C. M., de Jeu, R. A. M., Guichard, F., Harris, P. P. & Dorigo, W. A. Afternoon rain extra seemingly over drier soils. Nature 489, 423–426 (2012).
Google Scholar
Goodrich, D. C., Faurès, J. M., Woolhiser, D. A., Lane, L. J. & Sorooshian, S. Measurement and evaluation of small-scale convective storm rainfall variability. J. Hydrol. (Amst.) 173, 283–308 (1995).
Google Scholar
Spracklen, D. V., Arnold, S. R. & Taylor, C. M. Observations of elevated tropical rainfall preceded by air passage over forests. Nature 489, 282–285 (2012).
Google Scholar
Kirschbaum, D. B. et al. NASA’S remotely sensed precipitation: A reservoir for purposes customers. Bull. Am. Meteorol. Soc. 98, 1169–1184 (2017).
Google Scholar
Tune, Y., Liu, H., Wang, X., Zhang, N. & Solar, J. Numerical simulation of the impression of city non-uniformity on precipitation. Adv. Atmos. Sci. 33, 783–793 (2016).
Google Scholar
de Leeuw, J., Methven, J. & Blackburn, M. Analysis of ERA-Interim reanalysis precipitation merchandise utilizing England and Wales observations. Q. J. R. Meteorol. Soc. 141, 798–806 (2015).
Google Scholar
Schneider, U. et al. GPCC’s new land floor precipitation climatology primarily based on quality-controlled in situ information and its function in quantifying the worldwide water cycle. Theor. Appl. Climatol. 115, 15–40 (2014).
Google Scholar
Schwaller, M. R. & Robert Morris, Ok. A floor validation community for the worldwide precipitation measurement mission. J. Atmos. Ocean Technol. 28, 301–319 (2011).
Google Scholar
Li, X., Chen, Y., Wang, H. & Zhang, Y. Evaluation of GPM IMERG and radar quantitative precipitation estimation (QPE) merchandise utilizing dense rain gauge observations within the Guangdong-Hong Kong-Macao Better Bay Space, China. Atmos. Res. 236, 104834 (2020).
Google Scholar
Zhang, L. et al. Analysis and integration of the top-down and bottom-up satellite tv for pc precipitation merchandise over mainland China. J. Hydrol. 581, 124456 (2020).
Google Scholar
Arkin, P. A. & Meisner, B. N. The connection between large-scale convective rainfall and chilly cloud over the western hemisphere throughout 1982–84. Mon. Climate Rev. 115, 51–74 (1987).
Google Scholar
Iguchi, T., Kozu, T., Meneghini, R., Awaka, J. & Okamoto, Ok. Rain-profiling algorithm for the TRMM precipitation radar. J. Appl. Meteorol. Climatol. 39, 2038–2052 (2000).
Google Scholar
Huffman, G. et al. The TRMM multisatellite precipitation evaluation (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at tremendous scales. J. Hydrometeorol. 8, 38–56 (2007).
Google Scholar
Joyce, R. J., Janowiak, J. E., Arkin, P. A. & Xie, P. CMORPH: A technique that produces world precipitation estimates from passive microwave and infrared information at excessive spatial and temporal decision. J. Hydrometeorol. 5, 487–503 (2004).
Google Scholar
Huffman, G. J. et al. The TRMM multisatellite precipitation evaluation (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at tremendous scales. J. Hydrometeorol. 8, 38–55 (2007).
Google Scholar
Kubota, T. et al. World precipitation map utilizing satellite-borne microwave radiometers by the GSMaP venture: Manufacturing and validation. IEEE Trans. Geosci. Distant Sens. 45, 2259–2275 (2007).
Google Scholar
Wang, Z., Zhong, R., Lai, C. & Chen, J. Analysis of the GPM IMERG satellite-based precipitation merchandise and the hydrological utility. Atmos. Res. 196, 151–163 (2017).
Google Scholar
Tang, G. et al. Statistical and hydrological comparisons between TRMM and GPM level-3 merchandise over a midlatitude Basin: Is day-1 IMERG a very good successor for TMPA 3B42V7? J. Hydrometeorol. 17, 121–137 (2016).
Google Scholar
Aghakouchak, A. & Nakhjiri, N. A close to real-time satellite-based world drought local weather information file. Environ. Res. Lett. 7, 044037 (2012).
Google Scholar
Gurarie, E. et al. Tactical departures and strategic arrivals: Divergent results of local weather and climate on caribou spring migrations. Ecosphere 10, 2971 (2019).
Google Scholar
Thaler, S. et al. Results of various spatial precipitation enter information on crop mannequin outputs below a central European local weather. Ambiance 9, 290 (2018).
Google Scholar
Schiermeier, Q. The actual holes in local weather science. Nature 463, 284–287 (2010).
Google Scholar
Kobayashi, S. et al. The JRA-55 reanalysis: Normal specs and primary traits. J. Meteorol. Soc. Jpn 93, 5–48 (2015).
Google Scholar
Saha, S. et al. The NCEP local weather forecast system reanalysis. Bull. Am. Meteorol. Soc. 91, 1015–1057 (2010).
Google Scholar
Saha, S. et al. The NCEP local weather forecast system model 2. J. Clim. 27, 2185–2208 (2014).
Google Scholar
Dee, D. P. et al. The ERA-Interim reanalysis: Configuration and efficiency of the info assimilation system. Q. J. R. Meteorol. Soc. 137, 553–597 (2011).
Google Scholar
Kim, J. E. & Hong, S. Y. A worldwide atmospheric evaluation dataset downscaled from the NCEP-DOE reanalysis. J. Clim. 25, 2527–2534 (2012).
Google Scholar
Nicholas, R. E. & Battisti, D. S. Empirical downscaling of high-resolution regional precipitation from large-scale reanalysis fields. J. Appl. Meteorol. Climatol. 51, 100–114 (2012).
Google Scholar
Huffman, G. J. et al. Algorithm Theoretical Foundation Doc (ATBD) Model 06: NASA World Precipitation Measurement (GPM) Built-in Multi-satellitE Retrievals for GPM (IMERG), 1–34 (2019).
Hersbach, H. et al. The ERA5 world reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).
Google Scholar
Hou, A. Y. et al. The worldwide precipitation measurement mission. Bull. Am. Meteorol. Soc. 95, 701–722 (2014).
Google Scholar
Hersbach, H. et al. World reanalysis: Goodbye ERA-Interim, hi there ERA5. ECMWF E-newsletter, 17–24. https://doi.org/10.21957/vf291hehd7 (2019).
Tang, G., Ma, Y., Lengthy, D., Zhong, L. & Hong, Y. Analysis of GPM Day-1 IMERG and TMPA Model-7 legacy merchandise over Mainland China at a number of spatiotemporal scales. J. Hydrol. (Amst.) 533, 152–167 (2016).
Google Scholar
Li, Z. et al. Analysis of GPM IMERG and its constellations in excessive occasions over the conterminous u.s.. J. Hydrol. 606, 127357 (2022).
Google Scholar
Tan, J., Petersen, W. A. & Tokay, A. A novel strategy to determine sources of errors in IMERG for GPM floor validation. J. Hydrometeorol. 17, 2477–2491 (2016).
Google Scholar
Yu, C., Hu, D., Di, Y. & Wang, Y. Efficiency analysis of IMERG precipitation merchandise throughout storm Lekima (2019). J. Hydrol. 597, 126307 (2021).
Google Scholar
Xu, R. et al. Floor validation of GPM IMERG and trmm 3B42V7 rainfall merchandise over Southern Tibetan Plateau primarily based on a high-density rain gauge community. J. Geophys. Res. Atmos. 122, 910–924 (2017).
Google Scholar
Gentilucci, M., Barbieri, M. & Pambianchi, G. Reliability of the IMERG product by means of reference rain gauges in Central Italy. Atmos. Res. 278, 106340 (2022).
Google Scholar
Mayor, Y. G., Tereshchenko, I., Fonseca-Hernández, M., Pantoja, D. A. & Montes, J. M. Analysis of error in IMERG precipitation estimates below completely different topographic circumstances and temporal scales over Mexico. Distant Sens. (Basel) 9, 1–18 (2017).
Chen, H. et al. Investigating the analysis uncertainty for satellite tv for pc precipitation estimates primarily based on two completely different floor precipitation remark merchandise. J. Hydrometeorol. 21, 2595–2606 (2020).
Google Scholar
Meng, C., Mo, X., Liu, S. & Hu, S. Intensive analysis of IMERG precipitation for each liquid and strong in Yellow River supply area. Atmos. Res. 256, 105570 (2021).
Google Scholar
Prakash, S. et al. A preliminary evaluation of GPM-based multi-satellite precipitation estimates over a monsoon dominated area. J. Hydrol. (Amst.) 556, 865–876 (2018).
Google Scholar
Asong, Z. E., Razavi, S., Wheater, H. S. & Wong, J. S. Analysis of built-in multisatellite retrievals for GPM (IMERG) over Southern Canada towards floor precipitation observations: A preliminary evaluation. J. Hydrometeorol. 18, 1033–1050 (2017).
Google Scholar
Tan, J., Petersen, W. A., Kirstetter, P. E. & Tian, Y. Efficiency of IMERG as a operate of spatiotemporal scale. J. Hydrometeorol. 18, 307–319 (2017).
Google Scholar
Zandler, H., Haag, I. & Samimi, C. Analysis wants and temporal efficiency variations of gridded precipitation merchandise in peripheral mountain areas. Sci. Rep. 9, 1–15 (2019).
Google Scholar
Sharifi, E., Eitzinger, J. & Dorigo, W. Efficiency of the state-of-the-art gridded precipitation merchandise over mountainous terrain: A regional research over Austria. Distant Sens. (Basel) 11, 1–20 (2019).
Amjad, M., Yilmaz, M. T., Yucel, I. & Yilmaz, Ok. Ok. Efficiency analysis of satellite- and model-based precipitation merchandise over various local weather and complicated topography. J. Hydrol. 584, 124707 (2020).
Google Scholar
Tarek, M., Brissette, F. P. & Arsenault, R. Analysis of the ERA5 reanalysis as a possible reference dataset for hydrological modelling over North America. Hydrol. Earth Syst. Sci. 24, 2527–2544 (2020).
Google Scholar
Jiang, Q. et al. Analysis of the ERA5 reanalysis precipitation dataset over Chinese language Mainland. J. Hydrol. 595, 125660 (2021).
Google Scholar
Kolluru, V., Kolluru, S. & Konkathi, P. Analysis and integration of reanalysis rainfall merchandise below contrasting weather conditions in India. Atmos. Res. 246, 105121 (2020).
Google Scholar
Fallah, A., Sungmin, O., Reza, G. & Peter, R. Analysis of precipitation datasets towards native observations in southwestern Iran. Int. J. Climatol. https://doi.org/10.1002/joc.6445 (2020).
Google Scholar
Gleixner, S., Demissie, T. & Diro, G. T. Did ERA5 enhance temperature and precipitation reanalysis over East Africa? Ambiance (Basel) 11, 1–19 (2020).
Bandhauer, M. et al. Analysis of day by day precipitation analyses in E-OBS (v19.0e) and ERA5 by comparability to regional high-resolution datasets in European areas. Int. J. Climatol. 42, 727. https://doi.org/10.1002/joc.7269 (2021).
Google Scholar
Beck, H. E. et al. Day by day analysis of 26 precipitation datasets utilizing Stage-IV gauge-radar information for the CONUS. Hydrol. Earth Syst. Sci. 23, 207–224 (2019).
Google Scholar
Tang, G., Clark, M. P., Papalexiou, S. M., Ma, Z. & Hong, Y. Have satellite tv for pc precipitation merchandise improved over final 20 years? A complete comparability of GPM IMERG with 9 satellite tv for pc and reanalysis datasets. Distant Sens. Environ. 240, 111697 (2020).
Google Scholar
Lu, X. et al. The potential and uncertainty of triple collocation in assessing satellite tv for pc precipitation merchandise in Central Asia. Atmos. Res. 252, 105452 (2021).
Google Scholar
Dubey, S., Gupta, H., Goyal, M. Ok. & Joshi, N. Analysis of precipitation datasets out there on Google earth engine over India. Int. J. Climatol. https://doi.org/10.1002/joc.7102 (2021).
Google Scholar
Yazdandoost, F., Moradian, S., Izadi, A. & Bavani, A. M. A framework for growing a spatial high-resolution day by day precipitation dataset over a data-sparse area. Heliyon 6, e05091 (2020).
Google Scholar
Feng, Ok. et al. Evaluating applicability of multi-source precipitation datasets for runoff simulation of small watersheds: A case research in the USA. Eur. J. Distant Sens. 00, 1–11 (2020).
Seddon, A. W. R., Macias-Fauria, M., Lengthy, P. R., Benz, D. & Willis, Ok. J. Sensitivity of worldwide terrestrial ecosystems to local weather variability. Nature 531, 229–232 (2016).
Google Scholar
Kang, S., Lee, G., Togtokh, C. & Jang, Ok. Characterizing regional precipitation-driven lake space change in Mongolia. J. Arid Land 7, 146–158 (2015).
Google Scholar
Wang, J., Brown, D. G. & Chen, J. Drivers of the dynamics in internet major productiveness throughout ecological zones on the Mongolian Plateau. Landsc. Ecol. 28, 725–739 (2013).
Google Scholar
Miao, L., Liu, Q., Fraser, R., He, B. & Cui, X. Shifts in vegetation progress in response to a number of elements on the Mongolian Plateau from 1982 to 2011. Phys. Chem. Earth 87–88, 50–59 (2015).
Google Scholar
Chen, M. L., Zhang, B. W., Ren, T. T., Wang, S. S. & Chen, S. P. Responses of soil moisture to precipitation sample change in semiarid grasslands in Nei Mongol, China. Chin. J. Plant Ecol. 40, 658–668 (2016).
Google Scholar
Zhang, H., Meng, F., Sa, C. & Luo, M. Spatiotemporal change and trigger evaluation of ecosystem high quality in Mongolian Plateau throughout 2001 to 2019. Chin. J. Ecol. 131, 108214 (2022).
Huang, J., Chen, X., Zhou, L., Xue, Y. & Lin, J. Statistical evaluation of the connection between climate-induced maize yield and rainy-season precipitation throughout Inside Mongolia, North China. Theor. Appl. Climatol. 129, 1145–1156 (2017).
Google Scholar
Miao, L. et al. Local weather impression on vegetation and animal husbandry on the Mongolian Plateau: A comparative evaluation. Nat. Hazards 80, 727–739 (2016).
Google Scholar
Li, C. et al. An evaluation of the impacts of local weather extremes on the vegetation in Mongolian Plateau: Utilizing a scenarios-based evaluation to assist regional adaptation and mitigation choices. Ecol. Indic. 95, 805–814 (2018).
Google Scholar
Piao, J., Chen, W., Zhang, Q. & Hu, P. Comparability of moisture transport between Siberia and Northeast Asia on annual and interannual time scales. J. Clim. 31, 7645–7660 (2018).
Google Scholar
Legislation, M. & Collins, A. Attending to Know ArcGIS for Desktop third edn. (Esri Press, 2013).
Nationwide Climatic Information Heart. World Floor Abstract of the Day. https://www.ncei.noaa.gov/metadata/geoportal/relaxation/metadata/merchandise/gov.noaa.ncdc:C00516/html.
Huffman, G. J. & Bolvin, D. T. TRMM and Different Information Precipitation Information Set Documentation. https://docserver.gesdisc.eosdis.nasa.gov/public/venture/GPM/3B42_3B43_doc_V7.pdf (2018).
Huffman, G. J., Adler, R. F., Bolvin, D. T. & Nelkin, E. J. The TRMM multi-satellite precipitation evaluation (TMPA). In Satellite tv for pc Rainfall Purposes for Floor Hydrology (eds Gebremichael, M. & Hossain, F.) 3–22 (Springer, 2010).
Google Scholar
Bitew, M. M. & Gebremichael, M. Analysis of satellite tv for pc rainfall merchandise by means of hydrologic simulation in a totally distributed hydrologic mannequin. Water Resour. Res. 47, 1–11 (2011).
Google Scholar
Huffman, G. J., Bolvin, D. T., Nelkin, E. J. & Adler, R. F. TRMM (TMPA) precipitation L3 1 day 0.25 diploma × 0.25 diploma V7 (TRMM_3B42_Daily). Goddard Earth Sciences Information and Data Providers Heart (GES DISC). https://disc.gsfc.nasa.gov/datasets/TRMM_3B42_Dail (2016).
Chiaravalloti, F., Brocca, L., Procopio, A., Massari, C. & Gabriele, S. Evaluation of GPM and SM2RAIN-ASCAT rainfall merchandise over advanced terrain in southern Italy. Atmos. Res. 206, 64–74 (2018).
Google Scholar
Huffman, G. J., Stocker, E. F., Bolvin, D. T., Nelkin, E. J. & Tan, J. GPM IMERG ultimate precipitation L3 1 day 0.1 diploma × 0.1 diploma V06 (GPM_3IMERGDF). Goddard Earth Sciences Information and Data Providers Heart (GES DISC). https://disc.gsfc.nasa.gov/datasets/GPM_3IMERGDF_06/abstract?key phrases=IMERG (2019).
Nationwide Aeronautics and House Administration. GPM Precipitation Information Listing. https://gpm.nasa.gov/information/listing.
Berrisford, P. et al. The ERA-Interim ARCHIVE VERSION 2.0. http://www.ecmwf.int/publications/library/do/references/record/782009percent5Cn, http://centaur.studying.ac.uk/1997/ (2011).
Muñoz Sabater, J. ERA5-Land hourly information from 1950 to current. In Copernicus Local weather Change Service (C3S) Local weather Information Retailer (CDS). https://cds.local weather.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land?tab=overview (2021).
Hersbach, H. et al. ERA5 hourly information on single ranges from 1959 to current. Copernicus Local weather Change Service (C3S) Local weather Information Retailer (CDS). https://cds.local weather.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview (2018).
European Centre for Medium-Vary Climate Forecast. ECMWF Public Datasets. https://apps.ecmwf.int/datasets/.
Sabater, J. M. First ERA5-Land dataset to be launched this spring. ECMWF E-newsletter, 8–9 (2019).
European Centre for Medium-Vary Climate Forecasts. In Conversion Desk for Amassed Variables (Whole Precipitation/Fluxes). https://confluence.ecmwf.int/pages/viewpage.motion?pageId=197702790.
Fujisada, H., Urai, M. & Iwasaki, A. Superior methodology for ASTER DEM era. IEEE Trans. Geosci. Distant Sens. 49, 5080–5091 (2011).
Google Scholar
Fujisada, H., Bailey, G. B., Kelly, G. G., Hara, S. & Abrams, M. J. ASTER DEM efficiency. IEEE Trans. Geosci. Distant Sens. 43, 2707–2714 (2005).
Google Scholar
Fujisada, H., Urai, M. & Iwasaki, A. Technical methodology for ASTER World DEM. IEEE Trans. Geosci. Distant Sens. 50, 3725–3736 (2012).
Google Scholar
United States Geological Survey. ASTER World Digital Elevation Mannequin 1 Arc Second. https://lpdaac.usgs.gov/merchandise/astgtmv003/.
Defourny, P. et al. Accuracy evaluation of a 300 m world land cowl map: The GlobCover expertise. In Proc. thirty third Worldwide Symposium on Distant Sensing of Setting, ISRSE 2009, 400–403 (2009).
European House Company. Land Cowl CCI Local weather Analysis Information Bundle. http://maps.elie.ucl.ac.be/CCI/viewer/obtain.php.
Saemian, P. et al. Complete analysis of precipitation datasets over Iran. J. Hydrol. 603, 127054 (2021).
Google Scholar
Xu, J., Ma, Z., Yan, S. & Peng, J. Do ERA5 and ERA5-land precipitation estimates outperform satellite-based precipitation merchandise? A complete comparability between state-of-the-art model-based and satellite-based precipitation merchandise over mainland China. J. Hydrol. 605, 127353 (2022).
Google Scholar
Gao, Y. C. & Liu, M. F. Analysis of high-resolution satellite tv for pc precipitation merchandise utilizing rain gauge observations over the Tibetan Plateau. Hydrol. Earth Syst. Sci. 17, 837–849 (2013).
Google Scholar
Yuan, X. et al. Characterizing the options of precipitation for the Tibetan Plateau amongst 4 gridded datasets: Detection accuracy and spatio-temporal variabilities. Atmos. Res. 264, 105875 (2021).
Google Scholar
Tang, G., Behrangi, A., Lengthy, D., Li, C. & Hong, Y. Accounting for spatiotemporal errors of gauges: A vital step to judge gridded precipitation merchandise. J. Hydrol. (Amst.) 559, 294–306 (2018).
Google Scholar
Demirtas, M. et al. The Developmental Testbed Heart Verification System (WRF, 2005).
de Luís, M., Raventós, J., González-Hidalgo, J. C., Sánchez, J. R. & Cortina, J. Spatial evaluation of rainfall traits within the area of Valencia (East Spain). Int. J. Climatol. 20, 1451–1469 (2000).
Google Scholar
Ngongondo, C., Xu, C. Y., Gottschalk, L. & Alemaw, B. Analysis of spatial and temporal traits of rainfall in Malawi: A case of knowledge scarce area. Theor. Appl. Climatol. 106, 79–93 (2011).
Google Scholar
Yue, S. et al. Mechanisms of the decadal variability of monsoon rainfall within the southern Tibetan Plateau. Environ. Res. Lett. 16, 014011 (2020).
Google Scholar
Brown, B. et al. Suggestions for the Verification and Intercomparison of QPFs from Operational NWP Fashions (WWRP/WGNE, 2004).
Wang, Y., Guo, Z. & Han, J. The connection between city warmth island and air pollution and them with influencing elements within the Yangtze River Delta, China. Ecol. Indic. 129, 107976 (2021).
Google Scholar
Yumnam, Ok., Kumar Guntu, R., Rathinasamy, M. & Agarwal, A. Quantile-based Bayesian mannequin averaging strategy in the direction of merging of precipitation merchandise. J. Hydrol. 604, 127206 (2022).
Google Scholar
Zhang, Y. et al. Analysis and comparability of precipitation estimates and hydrologic utility of CHIRPS, TRMM 3B42 V7 and PERSIANN-CDR merchandise in numerous local weather regimes. Atmos. Res. 265, 105881 (2022).
Google Scholar
Territory, A. C. et al. Analysis of precipitation estimation accuracy in reanalyses, satellite tv for pc merchandise, and an ensemble technique for areas in Australia and South and East Asia. J. Hydrometeorol. 14, 1323–1333 (2013).
Google Scholar
World Meteorological Group. In Information to Meteorological Devices and Strategies of Statement (WMO, 2012).
Willmott, C. J. On the validation of fashions. Phys. Geogr. 2, 184–194 (1981).
Google Scholar
Aghakouchak, A., Mehran, A., Norouzi, H. & Behrangi, A. Systematic and random error parts in satellite tv for pc precipitation information units. Geophys. Res. Lett. 39, 3–6 (2012).
Google Scholar
Tian, Y. et al. Modeling errors in day by day precipitation measurements: Additive or multiplicative? Geophys. Res. Lett. 40, 2060–2065 (2013).
Google Scholar
Milewski, A., Elkadiri, R. & Durham, M. Evaluation and comparability of TMPA satellite tv for pc precipitation merchandise in various climatic and topographic regimes in Morocco. Distant Sens. (Basel) 7, 5697–5717 (2015).
Google Scholar
Tucker, D. Orographic precipitation. In Encyclopedia of World Climatology (ed. Oliver, J. E.) 552–555 (Springer, 2005).
Google Scholar
Gadelha, A. N. et al. Grid box-level analysis of IMERG over Brazil at numerous area and time scales. Atmos. Res. 218, 231–244 (2019).
Google Scholar
Yu, C., Hu, D., Liu, M., Wang, S. & Di, Y. Spatio-temporal accuracy analysis of three high-resolution satellite tv for pc precipitation merchandise in China space. Atmos. Res. 241, 104952 (2020).
Google Scholar
Sharma, S. et al. Analysis of GPM-Period satellite tv for pc precipitation merchandise on the southern slopes of the central Himalayas towards rain gauge information. Distant Sens. 12, 1836 (2020).
Google Scholar
Hamza, A. et al. Evaluation of IMERG-V06, TRMM-3B42V7, SM2RAIN-ASCAT, and PERSIANN-CDR precipitation merchandise over the Hindu Kush Mountains of Pakistan, South Asia. Distant Sens. 12, 3871 (2020).
Google Scholar
Rozante, J. R., Vila, D. A., Chiquetto, J. B., de Fernandes, A. A. & Alvim, D. S. Analysis of TRMM/GPM blended day by day merchandise over Brazil. Distant Sens. (Basel) 10, 1–17 (2018).
Rios Gaona, M. F., Overeem, A., Leijnse, H. & Uijlenhoet, R. First-year analysis of GPM rainfall over the Netherlands: IMERG day 1 ultimate run (V03D). J. Hydrometeorol. 17, 2799–2814 (2016).
Google Scholar
Hong, T., Li, H. & Chen, M. Complete evaluations on the error traits of the state-of-the-art gridded precipitation merchandise over Jiangxi Province in 2019. Earth House Sci. 8, e2021EA001787 (2021).
Google Scholar
Qiu, C., Ding, L., Zhang, L., Xu, J. & Ma, Z. Quantitative traits of the present multi-source precipitation merchandise over Zhejiang Province, in Summer season, 2019. Water 13, 334 (2021).
Google Scholar
Hu, X. & Yuan, W. Analysis of ERA5 precipitation over the japanese periphery of the Tibetan Plateau from the angle of regional rainfall occasions. Int. J. Climatol. 41, 2625–2637 (2021).
Google Scholar
Fessehaye, M., Franke, J. & Brönnimann, S. Analysis of satellite-based (CHIRPS and GPM) and reanalysis (ERA5-Land) precipitation estimates over Eritrea. Meteorol. Z. 08, 401–413 (2022).
Google Scholar
Wang, J., Petersen, W. A. & Wolff, D. B. Validation of satellite-based precipitation merchandise from TRMM to GPM. Distant Sens. 13, 1745 (2021).
Google Scholar
Singh, Ok. A., Tripathi, J. N., Singh, Ok. Ok., Singh, V. & Sateesh, M. Comparability of various satellite-derived rainfall merchandise with IMD gridded information over Indian meteorological subdivisions throughout Indian Summer season Monsoon (ISM) 2016 at weekly temporal decision. J. Hydrol. (Amst.) 575, 1371–1379 (2019).
Google Scholar
Hamm, A. et al. Intercomparison of gridded precipitation datasets over a sub-region of the central himalaya and the southwestern tibetan Plateau. Water 12, 3271 (2020).
Google Scholar
Zhang, L. et al. Complete analysis of mainstream gridded precipitation datasets within the chilly season throughout the Tibetan Plateau. J. Hydrol. Reg. Stud. 43, 101186 (2022).
Google Scholar
Gao, Z. et al. Complete comparisons of state-of-the-art gridded precipitation estimates for hydrological purposes over southern China. Distant Sens. (Basel) 12, 1–20 (2020).
Steinkopf, J. & Engelbrecht, F. Verification of ERA5 and ERA-Interim precipitation over Africa at intra-annual and interannual timescales. Atmos. Res. 280, 106427 (2022).
Google Scholar
Zhang, A. & Fu, Y. The structural traits of precipitation instances detected by dual-frequency radar of GPM satellite tv for pc. Chin. J. Atmos. Sci. 42, 33–51 (2018).
Ringerud, S., Peters-Lidard, C., Munchak, J. & You, Y. Purposes of dynamic land floor data for passive microwave precipitation retrieval. J. Atmos. Ocean Technol. 38, 167–180 (2021).
Google Scholar
Derin, Y., Kirstetter, P.-E. & Gourley, J. J. Analysis of IMERG satellite tv for pc precipitation over the land–coast–ocean continuum. Half I: Detection. J. Hydrometeorol. https://doi.org/10.1175/jhm-d-21-0058.1 (2021).
Google Scholar
Xin, Y., Lu, N., Jiang, H., Liu, Y. & Yao, L. Efficiency of ERA5 reanalysis precipitation merchandise within the Guangdong-Hong Kong-Macao higher Bay Space, China. J. Hydrol. 602, 126791 (2021).
Google Scholar
Qi, W., Yong, B. & Gourley, J. J. Monitoring the tremendous storm lekima by GPM-based near-real-time satellite tv for pc precipitation estimates. J. Hydrol. 603, 126968 (2021).
Google Scholar
Kumar, M. et al. Measuring precipitation in Jap Himalaya: Floor validation of 11 satellite tv for pc, mannequin and gauge interpolated gridded merchandise. J. Hydrol. (Amst.) 599, 126252 (2021).
Google Scholar
Mahmoud, M. T., Hamouda, M. A. & Mohamed, M. M. Spatiotemporal analysis of the GPM satellite tv for pc precipitation merchandise over the United Arab Emirates. Atmos. Res. 219, 200–212 (2019).
Google Scholar
Islam, M. D. A. & Cartwright, N. Analysis of local weather reanalysis and space-borne precipitation merchandise over Bangladesh. Hydrol. Sci. J. 65, 1112–1128 (2020).
Google Scholar
Zhang, A. et al. Analysis of newest GPM-Period high-resolution satellite tv for pc precipitation merchandise through the Might 2017 Guangdong excessive rainfall occasion. Atmos. Res. 216, 76–85 (2019).
Google Scholar
[ad_2]
Source link